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Abstract

A generalized Jacobian/exponential expansion method for finding the exact
traveling wave solutions of a nonlinear partial differential equation is discussed.
We use this method to construct many new, previously undiscovered exact
solutions for the Boussinesq and modified KdV equations. We also apply it to
the shallow long wave approximate equations. New solutions are deduced for
this system of partial differential equations.

PACS numbers: 02.30.Jr, 04.20.Jb

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Solutions of partial differential equations have attracted significant interest in the literature.
Exact traveling wave solutions, in particular, are useful both in practice and for verifying the
accuracy and stability of popular numerical schemes such as the finite difference and finite
element methods. By employing a computer algebra software such as Maple or Mathematica,
the large amounts of tedious working required to verify candidate traveling wave solutions can
be avoided. The capability and power of these softwares have increased dramatically over the
past decade. Hence, a direct search for exact solutions is now much more viable.

Several effective direct search methods have been proposed in the literature. These include
the tanh method [15, 16], exp-function method [6, 20], Jacobian elliptic function method
[12, 18], Weierstrass’s elliptic function method [17], reduction of order methods [9, 10], and
cosh/sinh ansatz I–III method [19]. In this paper, we extend the generalized expansion method
developed in [2, 3]. More specifically, we develop some new Jacobian elliptic and exponential
solution classes for the same auxiliary ordinary differential equation (ODE) considered in
these papers. The solutions of the ODE are then used to construct candidate traveling wave
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solutions. Our new results ensure that, when applied to the classical Boussinesq and modified
KdV equations, this generalized expansion method not only recovers all of the solutions
reported in [6, 12, 18, 19, 22], but also discovers many new ones. Furthermore, this approach
is flexible as well as powerful—it is easily adapted in section 6 to handle the system of shallow
long wave approximate equations.

2. Preliminary results

The Jacobian elliptic functions are thoroughly discussed in [1, 5]. Since these special functions
play an important role in the following, we will briefly introduce them here. We will also
discuss some preliminary results that form the basis for our work in sections 3–6. Note that
we will follow the usual convention and let i denote the complex number satisfying i2 = −1.
Moreover, for the remainder of this paper, m ∈ (0, 1) is arbitrary.

To begin with, consider the integral

ζ =
∫ ρ

0

dη√
1 − m2 sin2(η)

.

Here, the constant m is referred to as the modulus and the upper limit ρ is called the amplitude
of ζ , which we denote as

ρ = am(ζ ).

On this basis, the first three Jacobian elliptic functions are defined as

sn(ζ ) := sin[am(ζ )] = sin(ρ),

cn(ζ ) := cos[am(ζ )] = cos(ρ)

and

dn(ζ ) :=
√

1 − m2 sin2[am(ζ )] =
√

1 − m2 sin2(ρ).

As m → 1, we have

sn(ζ ) → tanh(ζ ), cn(ζ ) → sech(ζ ), dn(ζ ) → sech(ζ ).

Similarly, as m → 0,

sn(ζ ) → sin(ζ ), cn(ζ ) → cos(ζ ), dn(ζ ) → 1.

Nine additional Jacobian elliptic functions can be defined in terms of these first three—see
[1, 5] for details.

In [2, 3], the following auxiliary ODE was introduced:

[F ′(ξ)]2 = q0 + q1F(ξ) + q2[F(ξ)]2 + q3[F(ξ)]3 + q4[F(ξ)]4, (2.1)

where qk, k = 0, . . . , 4, are given coefficients. Various solutions of ODE (2.1) were
constructed using the Jacobian elliptic functions, and these results were exploited in the design
of a systematic procedure for generating solutions of nonlinear partial differential equations.
We will follow a similar approach in this paper. In our work, ODE (2.1) will be considered
assuming q4 �= 0. We will need to determine more general solution classes of ODE (2.1) than
those reported in [2, 3]. This is the motivation behind the preliminary results that follow.

Recall that m is an arbitrary real number satisfying 0 < m < 1. With this in mind, for
any (possibly complex) number γ , define the constants pj,k(γ ), j = 1, . . . , 12, k = 0, . . . , 4,
according to the following table.
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Furthermore, let the functions ϕj,k(·, γ ), j = 1, . . . , 12, k = 1, . . . , 4 be defined as
follows:

ϕ1,1(ξ, γ ) = dn(ξ)

γ dn(ξ) + 1
,

ϕ1,2(ξ, γ ) =
√

1 − m2

γ
√

1 − m2 + dn(ξ)
,

ϕ1,3(ξ, γ ) =
√

m2 − 1 sn(ξ)

γ
√

m2 − 1 sn(ξ) + cn(ξ)
,

ϕ1,4(ξ, γ ) = cn(ξ)

γ cn(ξ) + i sn(ξ)
,

ϕ2,1(ξ, γ ) = sn(ξ)

γ sn(ξ) + 1
,

ϕ2,2(ξ, γ ) = 1

γ + m sn(ξ)
,

ϕ2,3(ξ, γ ) = dn(ξ)

γ dn(ξ) + m cn(ξ)
,

ϕ2,4(ξ, γ ) = cn(ξ)

γ cn(ξ) + dn(ξ)
,

ϕ3,1(ξ, γ ) = cn(ξ)

γ cn(ξ) + 1
,

ϕ3,2(ξ, γ ) =
√

m2 − 1

γ
√

m2 − 1 + m cn(ξ)
,

ϕ3,3(ξ, γ ) = dn(ξ)

γ dn(ξ) + im sn(ξ)
,

ϕ3,4(ξ, γ ) =
√

1 − m2sn(ξ)

γ
√

1 − m2 sn(ξ) + dn(ξ)
,

ϕ4,1(ξ, γ ) = 1

γ + im sn(ξ) + dn(ξ)
,

ϕ4,2(ξ, γ ) = dn(ξ)

γ dn(ξ) + im cn(ξ) +
√

1 − m2
,

ϕ4,3(ξ, γ ) = sn(ξ)

γ sn(ξ) + i + i cn(ξ)
,

ϕ4,4(ξ, γ ) = cn(ξ)

γ cn(ξ) + i dn(ξ) +
√

m2 − 1sn(ξ)
,

ϕ5,1(ξ, γ ) = 1

γ + m cn(ξ) + dn(ξ)
,

ϕ5,2(ξ, γ ) = dn(ξ)

γ dn(ξ) + m
√

1 − m2sn(ξ) +
√

1 − m2
,
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ϕ5,3(ξ, γ ) = sn(ξ)

γ sn(ξ) + i dn(ξ) + i cn(ξ)
,

ϕ5,4(ξ, γ ) = cn(ξ)

γ cn(ξ) +
√

m2 − 1 +
√

m2 − 1sn(ξ)
,

ϕ6,1(ξ, γ ) = 1

γ + isn(ξ) + cn(ξ)
,

ϕ6,2(ξ, γ ) = dn(ξ)

γ dn(ξ) + i cn(ξ) +
√

1 − m2sn(ξ)
,

ϕ6,3(ξ, γ ) = m sn(ξ)

γm sn(ξ) + i + i dn(ξ)
,

ϕ6,4(ξ, γ ) = im cn(ξ)

iγm cn(ξ) + dn(ξ) +
√

1 − m2
,

ϕ7,1(ξ, γ ) =
√

1 − m2[1 + sn(ξ)]

γ
√

1 − m2 +
√

1 − m2(γ + 1)sn(ξ) + dn(ξ)
,

ϕ7,2(ξ, γ ) = dn(ξ) + cn(ξ)

γ dn(ξ) + (γ + 1) cn(ξ) + 1
,

ϕ7,3(ξ, γ ) =
√

1 − m2[1 + m sn(ξ)]

γm
√

1 − m2sn(ξ) +
√

1 − m2(γ + 1) + mi cn(ξ)
,

ϕ7,4(ξ, γ ) = dn(ξ) + m cn(ξ)

mγ cn(ξ) + (γ + 1) dn(ξ) + im sn(ξ)
,

ϕ8,1(ξ, γ ) = dn(ξ) +
√

1 − m2sn(ξ)

(1 +
√

1 − m2γ )sn(ξ) + γ dn(ξ)
,

ϕ8,2(ξ, γ ) =
√

1 − m2[cn(ξ) + 1]√
1 − m2γ +

√
1 − m2γ cn(ξ) + cn(ξ)

,

ϕ8,3(ξ, γ ) =
√

1 − m2 + im cn(ξ)

1 +
√

1 − m2γ + iγm cn(ξ)
,

ϕ8,4(ξ, γ ) =
√

1 − m2 dn(ξ) + m
√

m2 − 1sn(ξ)

dn(ξ) + γ
√

1 − m2 dn(ξ) + m
√

m2 − 1γ sn(ξ)
,

ϕ9,1(ξ, γ ) = sn(ξ) +
√

1 − m2 dn(ξ)

m
√

2 − m2 +
√−m4 + m2 + 1 cn(ξ)

,

ϕ9,2(ξ, γ ) = cn(ξ) − 1 + m2

m
√

2 − m2 dn(ξ) +
√

(−m4 + m2 + 1)(1 − m2)sn(ξ)
,

ϕ9,3(ξ, γ ) = dn(ξ) + im(1 − m2)sn(ξ)

m2
√

2 − m2 cn(ξ) +
√

(−m4 + m2 + 1)(m2 − 1)
,

ϕ9,4(ξ, γ ) = 1 + m
√

m2 − 1 cn(ξ)

m2
√

2 − m2sn(ξ) +
√

m4 − m2 − 1 dn(ξ)
,
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ϕ10,1(ξ, γ ) = cn(ξ) +
√

1 − m2 dn(ξ)

m2 − 1 +
√

m4 − m2 + 1 cn(ξ)
,

ϕ10,2(ξ, γ ) = sn(ξ) +
√

1 − m2

√
1 − m2 dn(ξ) +

√
m4 − m2 + 1sn(ξ)

,

ϕ10,3(ξ, γ ) = 1 + m
√

1 − m2sn(ξ)

m
√

m2 − 1 cn(ξ) +
√

m4 − m2 + 1
,

ϕ10,4(ξ, γ ) = dn(ξ) + m
√

1 − m2 cn(ξ)

i(m3 − m)sn(ξ) +
√

m4 − m2 + 1 dn(ξ)
,

ϕ11,1(ξ, γ ) = cn(ξ) +
√

1 − m2 dn(ξ)

m +
√

m4 − m2 + 1sn(ξ)
,

ϕ11,2(ξ, γ ) =
√

1 − m2sn(ξ) − 1 + m2

m dn(ξ) +
√

m4 − m2 + 1 cn(ξ)
,

ϕ11,3(ξ, γ ) = i[dn(ξ) + m
√

1 − m2 cn(ξ)]

m2sn(ξ) +
√

m4 − m2 + 1
,

ϕ11,4(ξ, γ ) =
√

m2 − 1[1 + m
√

1 − m2sn(ξ)]

m2 cn(ξ) +
√

m4 − m2 + 1 dn(ξ)
,

ϕ12,1(ξ, γ ) = cn(ξ) + 1 − m2

√
1 − m2 dn(ξ) +

√
1 − m4 + m2 cn(ξ)

,

ϕ12,2(ξ, γ ) = sn(ξ) +
√

1 − m2 dn(ξ)√
1 − m2 +

√
1 − m4 + m2sn(ξ)

,

ϕ12,3(ξ, γ ) = 1 + m
√

m2 − 1 cn(ξ)

m
√

1 − m2sn(ξ) +
√

1 − m4 + m2
,

ϕ12,4(ξ, γ ) = dn(ξ) + i(m3 − m)sn(ξ)

m
√

1 − m2 cn(ξ) +
√

1 − m4 + m2 dn(ξ)
.

Through the lengthy calculation, we can readily verify the following result. Note that
Maple can be used to help us for the calculation.

Theorem 1. Let γ be arbitrary. Then, for each j = 1, . . . , 12, ODE (2.1) with coefficients
qk = pj,k(γ ), k = 0, . . . , 4, has solutions ϕj,k(·, γ ), k = 1, . . . , 4.

Remark 1. Theorem 1 can be generalized further. In fact, it remains valid even if cn(ξ), sn(ξ)

and dn(ξ) are replaced, respectively, by ±cn(ξ),±sn(ξ) and ±dn(ξ) in the expressions for
ϕj,k given above.

In some cases, the solutions of ODE (2.1) can be used to generate additional solutions.
This observation is furnished precisely in theorems 2 and 3. Again, Maple can be used to
conveniently verify these results.

Theorem 2. Suppose that ϕ is a solution of ODE (2.1) with coefficients qk = q̂k, k = 0, . . . , 4,
where q̂1 = q̂3 = 0, and q̂0, q̂2 and q̂4 are given constants such that q̂0 �= 0. Then,

±
√

q̂4

q̂0
ϕ +

1

ϕ
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Table 1. The definition of the constants pj,k(γ ), j = 1, . . . , 12, k = 0, . . . , 4.

j pj,0(γ ) pj,1(γ ) pj,2(γ ) pj,3(γ ) pj,4(γ )

1 m2 − 1 4γ (1 − m2) 2 − 6γ 2+ 2γ (2γ 2 − 2+ γ 4m2 + 2γ 2 − γ 4−
6γ 2m2 − m2 m2 − 2γ 2m2) 1 − γ 2m2

2 1 −4γ 6γ 2 − 1 − m2 2γ (1 + m2 − 2γ 2) γ 4 + m2 − γ 2 − γ 2m2

3 1 − m2 4γ (m2 − 1) 2m2 − 6γ 2m2+ 2γ (2γ 2m2− 2γ 2m2 + γ 4 − m2−
6γ 2 − 1 2γ 2 + 1 − 2m2) γ 4m2 − γ 2

4 − 1
4 γ

−3γ 2+1−2m2

2 γ (2m2 + γ 2 − 1)
−γ 4−1−4γ 2m2+2γ 2

4

5 − 1
4 γ

1−3γ 2+m2

2 γ (γ 2 − 1 − m2)
2γ 2+2m2−γ 4−1+2γ 2m2−m4

4

6 − m2

4 γm2 m2−3γ 2m2−2
2 γ (γ 2m2 − m2 + 2)

2γ 2m2−γ 4m2−m2−4γ 2

4

7 0 m2 − 1 3γ + 2 − 3γm2 − m2 3γ 2m2 + 2γm2− γ (γ + 1)

3γ 2 − 4γ − 1 (γ + 1 − γm2)

8 0 −2
√

1 − m2 6
√

1 − m2γ − 4m2 + 5 (8m2 − 10)γ− (4γ + 2γ 3)
√

1 − m2+

(6γ 2 + 4)
√

1 − m2 1 + (5 − 4m2)γ 2

9 1
4 0 −m2 + 1

2 0 1
4

10 m2

4(1−m2)

√
m4−m2+1
m2−1

2m4−3m2+4
2(1−m2)

√
m4−m2+1
m2−1

m2

4(1−m2)

11 1−m2

4 0 1+m2

2 0 1−m2

4

12 m2(2−m2)

4(1−m2)

√
1−m4+m2

m2−1
m4−4

2(m2−1)

√
1−m4+m2

m2−1
m2(2−m2)

4(1−m2)

is a solution of ODE (2.1) with coefficients

q0 = 8q̂4 ∓ 4q̂2

√
q̂4

q̂0
, q1 = 0, q2 = q̂2 ∓ 6q̂0

√
q̂4

q̂0
, q3 = 0, q4 = q̂0.

Theorem 3. Suppose that ϕ is a solution of ODE (2.1) with coefficients qk = q̂k, k = 0, . . . , 4,

where q̂k, k = 0, . . . , 4, are given constants such that q̂1 �= 0 and q̂4 = q̂0q̂
2
3

q̂2
1

. Then,

q̂3

q̂1
ϕ +

1

ϕ

is a solution of ODE (2.1) with coefficients

q0 = 4q̂3(2q̂0q̂3− q̂1q̂2)

q̂2
1

, q1 = −4q̂3, q2 = q̂2 − 6q̂0q̂3

q̂1
, q3 = q̂1, q4 = q̂0.

Remark 2. From table 1 and theorem 1, the reader will note that, for any γ , theorem 3 can be
invoked with ϕj,k(·, γ ), j ∈ {10, 12}, k = 1, . . . , 4.

We would also like to consider the non-Jacobian elliptic solutions of ODE (2.1). As such,
to conclude this section, we present the following two results. Both can be proved easily via
direct substitution.

Theorem 4. Let a−1, a0, a1 and b0 be given constants such that a−1 �= 0 and a0 �= a−1b0.
Then,

a−1 e−ξ + a0 + a1 eξ

e−ξ + b0 + a1
a−1

eξ

6
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is a solution of ODE (2.1) with coefficients

q0 = −
(
4a−1a1 − a2

0

)
a2

−1

(a−1b0 − a0)2
, q1 = 2a−1

(−a0a−1b0 + 8a−1a1 − a2
0

)
(a−1b0 − a0)2

,

q2 = a2
−1b

2
0 + 4a−1a0b0 − 24a−1a1 + a2

0

(a−1b0 − a0)2
, q3 = 2(8a1 − a−1b

2
0 − a0b0)

(a−1b0 − a0)2
,

q4 = a−1b
2
0 − 4a1

a−1(a−1b0 − a0)2
.

Theorem 5. Let a−1, a1, b0 and b1 be given constants such that a1 �= b1a−1 and

a0 = b0(a−1b1+a1)±(a−1b1−a1)
√

b2
0−4b1

2b1
. Then,

a−1 e−ξ + a0 + a1 eξ

e−ξ + b0 + b1 eξ

is a solution of ODE (2.1) with coefficients

q0 = a2
−1a

2
1

(b1a−1 − a1)2
, q1 = −2a−1a

2
1 − 2b1a

2
−1a1

(b1a−1 − a1)2
,

q2 = a2
1 + 4a−1b1a1 + a2

−1b
2
1

(b1a−1 − a1)2
, q3 = −2a1b1 − 2a−1b

2
1

(b1a−1 − a1)2
, q4 = b2

1

(b1a−1 − a1)2
.

Note that additional solutions of ODE (2.1) can be constructed using Weierstrass’ elliptic
function. The reader is directed to [17] for more details.

3. A generalized expansion method

We will briefly outline a generalized expansion method for constructing traveling wave
solutions. Similar procedures have been developed in [2, 3]. However, the new results
given in the previous section ensure that our method yields many new solutions when
applied to some classical partial differential equations. This will be clearly demonstrated in
sections 4–6.

We consider the following nonlinear wave equation:

H(u, ut , ux, utt , uxx, uxt , . . .) = 0, (3.1)

where u := u(x, t) is a real or complex-valued function, H is a given function involving
powers of its arguments and the subscripts denote differentiation. We will consider candidate
traveling wave solutions that take the form

u(x, t) = ũ(ξ) =
N∑

j=0

cj [F(ξ)]j , (3.2)

where ξ = μ(x − νt), μ > 0 is the wave number, ν is the traveling wave velocity, N is
an integer, F is a non-trivial solution of ODE (2.1) with coefficients qk, k = 0, . . . , 4 and
cj , j = 0, . . . , N are constants with cN �= 0. Depending on the form of H,μ and ν will be
determined or remain as free parameters.

Note that ũ given by (3.2) is a polynomial function of F. Hence, it is readily seen that, for
each integer κ � 1, ũκ is also a polynomial in F. In this case, we use the degree notation O(·)
to denote the index of the highest power of F. Thus,

O(ũκ) = Nκ, κ � 1. (3.3)

7
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The derivatives of F can be obtained by repeatedly differentiating both sides of (2.1). For
example,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F ′′ = q1

2
+ q2F +

3q3

2
F 2 + 2q4F

3,

F ′′′ = (q2 + 3q3F + 6q4F
2)F ′,

F ′′′′ =
(

3q0q3 +
1

2
q1q2

)
+

(
q2

2 +
9

2
q1q3 + 12q0q4

)
F

+ 15

(
1

2
q2q3 + q1q4

)
F 2 +

(
20q2q4 +

15

2
q2

3

)
F 3 + 30q3q4F

4 + 24q2
4F 5.

(3.4)

It is not difficult to show that only the even derivatives are polynomials in F. The odd derivatives
also contain the terms of the form F j (F ′) , where j is a non-negative integer. In this case, we
define O(F ′) = 2 and so

O(F j (F ′)) = j + 2, j � 0.

By differentiating (3.2), we can also deduce the derivatives of ũ. For example,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ũ′ = (c1 + · · · + NcNFN−1)F ′,

ũ′′ = (c1 + · · · + NcNFN−1)F ′′ + [2c2 + · · · + N(N − 1)cNFN−2](F ′)2,

ũ′′′ = (c1 + · · · + NcNFN−1)F ′′′ + 3[2c2 + · · · + N(N − 1)cNFN−2]F ′F ′′

+ [6c3 + · · · + N(N − 1)(N − 2)cNFN−3](F ′)3,

ũ′′′′ = (c1 + · · · + NcNFN−1)F ′′′′

+ 4[2c2 + · · · + N(N − 1)cNFN−2]F ′F ′′′

+ 3[2c2 + · · · + N(N − 1)cNFN−2](F ′′)2

+ 6[6c3 + · · · + N(N − 1)(N − 2)cNFN−3](F ′)2F ′′

+ [24c4 + · · · + N(N − 1)(N − 2)(N − 3)cNFN−4](F ′)4,

(3.5)

where the derivatives of F are given in (2.1) and (3.4). Higher-order derivatives can be obtained
similarly. Again, only the even derivatives of ũ are polynomials in F. It is readily seen that

O(ũ(κ)) = N + κ, κ � 1. (3.6)

When ũ is substituted into (3.1), the original partial differential equation in x and t is reduced
to a nonlinear ODE in ξ . We will normally choose N so that the degrees of the highest-order
derivative term and highest-order nonlinear term in this reduced ODE are balanced. However,
this does not always result in an integral value for N. In this case, it is sometimes possible to
proceed by letting ũ = v

1
τ , where τ is the denominator of the fractional value of N (assuming

that the denominator and the numerator have no common factors), and solving the resulting
equation for v. This is illustrated in the following example.

Example 1. Consider the following Boussinesq-type equation:

utt − uxx + uxxxx + (u5 − u3)xx = 0.

By letting u(x, t) = ũ(μ(x − νt)), the above partial differential equation is reduced to the
following ODE:

ν2ũ′′ − ũ′′ + μ2ũ′′′′ + (ũ5 − ũ3)′′ = 0.

Integrating twice yields

ν2ũ − ũ + μ2ũ′′ + ũ5 − ũ3 = 0. (3.7)

8
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Here, the highest-order nonlinear term is ũ5 and the highest-order derivative term is ũ′′.
Balancing these two terms using (3.3) and (3.6) gives 5N = N + 2 or N = 1

2 . Setting ũ = v
1
2 ,

(3.7) becomes

(ν2 − 1)v2 +
μ2

4
[2vv′′ − (v′)2] + v4 − v3 = 0. (3.8)

Now, we can balance (v′)2 and v4 to yield N = 1. Hence, we can search for traveling wave
solutions of (3.8) which take the form v(μ(x − νt)) = c0 + c1F(μ(x − νt)), for constants c0

and c1. If such a v can be determined, then it is easy to derive ũ.

It is noted in example 1 that substituting ũ into (3.1) yields a nonlinear ODE in ξ . When the
derivatives of ũ are substituted into this reduced ODE, we will obtain a linear combination
of F j (F ′)k , where j � 0 is an integer and k ∈ {0, 1}. If ν, μ, and cj , j = 0, . . . , N , and
qk, k = 0, . . . , 4 can be chosen to make each coefficient in this linear combination zero, then
the resulting ũ will satisfy the original partial differential equation (3.1). However, in this
procedure, we sometimes end up with cj = 0, j = 0, . . . , N (we encounter this in section 6).
In this case, we can use the following alternative solution form proposed in [2]:

ũ(ξ) = c0,0 +
N∑

j=1

c1,j [F(ξ)]j + c2,j [F(ξ)]j−1F ′(ξ)

[θF (ξ) + 1]j
, (3.9)

where c0,0, ck,j , k = 1, 2, j = 1, . . . , N and θ are constants.
Note that each of the Jacobian elliptic solutions of ODE (2.1) reported in [2, 13, 14]

can be written as a scalar multiple of some ϕj,k(·, 0), j ∈ {1, . . . , 6}, k ∈ {1, . . . , 4}.
Hence, by applying our expansion method with (3.2) and theorem 1 to a nonlinear partial
differential equation, we can replicate every Jacobian elliptic solution obtained using the
methods presented in [13, 14]. Applying our expansion method with (3.9) and theorem
1 to a nonlinear partial differential equation, we can obtain all Jacobian elliptic solutions
obtained using the method presented in [2]. Similarly, each Jacobian elliptic solution of
ODE (2.1) reported in [3, 4] with ω = 1 can be written as a scalar multiple of some
ϕj,k(·, 0), j ∈ {1, . . . , 6}, k ∈ {1, . . . , 4}. It is also evident that, for the special case θ = 0,
using our expansion method with (3.9) and theorems 1 and 2, we can recover every Jacobian
elliptic solution obtained using the method of [3, 21]. Hence, by virtue of the new results in
section 2, our method is a significant generalization of the work reported in [2, 3, 13, 14].

4. Traveling wave solutions for the Boussinesq equation

Consider the well-known Boussinesq equation

utt = uxx + uxxxx + 3(u2)xx, (4.1)

where u := u(x, t) is a real-valued function. Various methods have been used to solve
Boussinesq-type equations [7, 8, 11]. Here, the general expansion method will be used to
derive new traveling wave solutions for (4.1). Letting u(x, t) = ũ(ξ), where ξ is as defined in
section 3, (4.1) becomes the following ODE:

ν2ũ′′ = ũ′′ + μ2ũ′′′′ + 3(ũ2)′′. (4.2)

Balancing (ũ2)′′ and ũ′′′′ gives 2N + 2 = N + 4 or N = 2. Hence, we will search for traveling
wave solutions of the form

ũ(ξ) = c0 + c1F(ξ) + c2[F(ξ)]2, (4.3)

9
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where c2 �= 0, and F satisfies ODE (2.1) with coefficients qk, k = 0, . . . , 4. Substituting (4.3)
into (4.2) and using (2.1) and (3.4)–(3.5), we obtain the following sufficient conditions for ũ

to satisfy (4.1):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

c0 = 3μ2q2
3 − 16μ2q4q2 − 4q4 + 4q4ν

2

24q4
,

c1 = −μ2q3,

c2 = −2μ2q4,

q1 = q3
(
4q2q4 − q2

3

)
8q2

4

.

(4.4)

That is, if a solution F of ODE (2.1) with coefficients satisfying q1 = q3(4q2q4−q2
3)

8q2
4

and q4 �= 0
can be found, then

ũ(ξ) = 3μ2q2
3 − 16μ2q4q2 − 4q4 + 4q4ν

2

24q4
− μ2q3F(ξ) − 2μ2q4[F(ξ)]2 (4.5)

is a solution of the Boussinesq equation (4.1). Now, we generalize this solution form further.
Note that if q1 = q3 = 0, then (4.5) reduces to

ũ(ξ) = ν2 − 1 − 4μ2q2

6
− 2μ2q4[F(ξ)]2. (4.6)

If q0 �= 0, then using theorem 2 with (4.6) gives the following solution form for equation (4.1):

ũ(ξ) = ν2 − 1 − 4μ2q2

6
− 2μ2q4[F(ξ)]2 − 2μ2q0

[F(ξ)]2
. (4.7)

Furthermore, note that (4.5) can be rewritten as

ũ(ξ) = μ2q2
3

4q4
+

ν2 − 4μ2q2 − 1

6
− 2μ2q4

(
F(ξ) +

q3

4q4

)2

. (4.8)

The solution forms (4.7) and (4.8) provide motivation for the following, more general,
candidate traveling wave solution:

ũ(ξ) = μ2q2
3

4q4
+

ν2 − 4μ2q2 − 1

6
− 2μ2q4

(
F(ξ) +

q3

4q4

)2

+ d

(
F(ξ) +

q3

4q4

)−2

, (4.9)

where d is a constant. By substituting (4.9) into (4.2), the value of d can be determined. We
summarize our results in the form of the following theorem.

Theorem 6. For each j = 1, 2, let εj ∈ {0, 1}. Suppose that F is a solution of ODE (2.1) with

coefficients qj , j = 0, . . . , 4 satisfying q4 �= 0 and q1 = q3(4q2q4−q2
3)

8q2
4

. Then, for any μ and ν,

u(x, t) = μ2q2
3

4q4
+

ν2 − 4μ2q2 − 1

6
− 2ε1μ

2q4

(
F (μ(x − νt)) +

q3

4q4

)2

+ ε2
μ2(16q2

3q2q4 − 5q4
3 − 256q3

4q0)

128q3
4

(
F(μ(x − νt)) + q3

4q4

)2

is a solution of the Boussinesq equation (4.1).

Remark 3. Note that the solution form given in theorem 6 includes both (4.5) and (4.7) as
special cases.

10



J. Phys. A: Math. Theor. 42 (2009) 045207 Q Lin et al

Note that the coefficients of ODE (2.1) in theorem 5 satisfy the requirements of theorem 6.
Thus, we can apply theorem 6 with the solutions reported in theorem 5 to obtain the following
class of traveling wave solutions for the Boussinesq equation (4.1):

u1(x, t) = ν2 − 1 + 2μ2

6
− ε1

μ2

2

(
−e−μ(x−νt) ± √

λ2 − 4ϑ + ϑ eμ(x−νt)

e−μ(x−νt) + λ + ϑ eμ(x−νt)

)2

− ε2
μ2

2

(
e−μ(x−νt) + λ + ϑ eμ(x−νt)

−e−μ(x−νt) ± √
λ2 − 4ϑ + ϑ eμ(x−νt)

)2

,

where for each j = 1, 2, εj ∈ {0, 1}, and λ, ϑ,μ and ν are arbitrary real constants such that
ϑ � λ2/4.

It should be addressed here that the above class of solutions includes all of those obtained
by combining theorems 4 and 6. Note that, for some cases, the denominators in the expression
of u1 can be equal to zero at certain points, and thus, such a solution is unbounded. For example,
u1 with ε1 = ε2 = 1 and ϑ �= 0 is unbounded. It is also noted that, for some cases, the solution
u1 is bounded. For instance, u1 with ε1 = 1, ε2 = 0, 0 � ϑ � λ2/4 and λ � 0 is bounded.
For the bounded case, clearly, the solution u1 gives a single wave that moves in the x-direction
with velocity ν and as μ(x − νt) → ±∞, u1(x, t) → (ν2 − 1 + 2μ2)/6 − μ2(ε1 + ε2)/2.

Choosing ϑ = 1 and replacing λ by 2λ, u1 becomes

u(x, t) = ν2 − 1 + 2μ2

6
− ε1

μ2

2

(
sinh[μ(x − νt)] ± √

λ2 − 1

cosh[μ(x − νt)] + λ

)2

− ε2
μ2

2

(
cosh[μ(x − νt)] + λ

sinh[μ(x − νt)] ± √
λ2 − 1

)2

, (4.10)

where for each j = 1, 2, εj ∈ {0, 1}, and λ,μ and ν are arbitrary real constants such that
λ � 1 or λ � −1.

Since u is a real-valued function, the arbitrary constants in u1 are generally real. However,
this is actually an unnecessary restriction—these constants can be complex provided that u1

remains real. If μ is replaced by iμ in (4.10), then we obtain another class of solutions:

u2(x, t) = ν2 − 1 − 2μ2

6
− ε1

μ2

2

(
sin[μ(x − νt)] ± √

1 − λ2

cos[μ(x − νt)] + λ

)2

− ε2
μ2

2

(
cos[μ(x − νt)] + λ

sin[μ(x − νt)] ± √
1 − λ2

)2

,

where for each j = 1, 2, εj ∈ {0, 1}, and μ, ν and λ are arbitrary real constants such that
−1 � λ � 1. Obviously, the solution u2 is unbounded.

Remark 4. In [19], the solutions of (4.1) were obtained using the sinh/cosh ansatz I–II
method, the sinh–cosh ansatz III method, the tanh method and the sine–cosine method. Each
of these solutions is a special case of u1 or u2.

To apply theorem 1 in conjunction with theorem 6, we must choose γ so that the hypotheses
of theorem 6 are satisfied. That is, γ should be chosen so that the following equation holds:

pj,1(γ ) = pj,3(γ )(4pj,2(γ )pj,4(γ ) − [pj,3(γ )]2)

8[pj,4(γ )]2
.

Then, the corresponding solutions reported in theorem 1 can be used with theorem 6.
Applying this procedure, we can obtain periodic solutions of Boussinesq equation (4.1) in

11
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terms of Jacobi elliptic functions. For each j = 1, . . . , 12, choosing qk = pj,k, k = 0, . . . , 4
and employing theorem 6 give solutions uj , j = 3, . . . , 26. Some of the solutions are listed
below.

u3(x, t) = ν2 − 1 + 4μ2(m2 + 1)

6
− 2μ2[ε1m

2 sn2(ξ) + ε2 sn−2(ξ)],

u4(x, t) = ν2 − 1 + 4μ2(m2 − 2)

6
+ 2μ2

[
ε1 dn2(ξ) +

1 − m2

dn2(ξ)

]
,

u5(x, t) = ν2 − 1 + 4μ2(m2 − 2)

6
− 2μ2

[
ε1

cn2(ξ)

sn2(ξ)
+

(1 − m2) sn2(ξ)

cn2(ξ)

]
,

u6(x, t) = ν2 − 1 + 4μ2(m2 + 1)

6
− 2μ2

[
m2 cn2(ξ)

dn2(ξ)
+

dn2(ξ)

cn2(ξ)

]
,

u7(x, t) = ν2 − 1 − 4μ2(2m2 − 1)

6
− 2μ2

[
−m2 cn2(ξ) +

1 − m2

cn2(ξ)

]
,

u8(x, t) = ν2 − 1 − 4μ2(2m2 − 1)

6
− 2μ2

[
dn2(ξ)

sn2(ξ)
+

m2(m2 − 1) sn2(ξ)

dn2(ξ)

]
,

u9(x, t) = ν2 − 1 + 2μ2(2m2 − 1)

6
− μ2[1 − cn(ξ)]

2[1 + cn(ξ)]
,

where for each j = 1, 2, εj ∈ {0, 1}, and μ and ν are arbitrary real constants. The other
Jacobi elliptic function solutions are listed in the appendix.

Remark 5. It follows from remark 1 that uj , j = 3, . . . , 26, still satisfy the Boussinesq
equation (4.1) even if cn(ξ), sn(ξ) and dn(ξ) are replaced, respectively, by ±cn(ξ),±sn(ξ)

and ±dn(ξ).

Remark 6. It is interesting to note that, for each j ∈ {3, . . . , 26}, the solution uj becomes a
special case of u1 as m → 1. Similarly, as m → 0, uj becomes a special case of u2.

Remark 7. The solution u3 is identical to the solutions reported in [12, 22], and the solution
u9 is the same as the solution reported in [23] (for c2

0 = 1, α = 1 and β = 3). However, all of
the other Jacobian elliptic function solutions are new solutions. Furthermore, if the candidate
traveling wave solutions of the form (3.9) are considered and our new results in section 2 are
applied, then many additional solutions can be obtained.

To show the physical insight of these solutions, here we take u4 and u7 as examples.
Figure 1 shows the wave profile of the solution u4 with m = 0.99, μ = 1 and ν = −1.
Clearly, the solution is a periodic function describing the traveling of waves in the negative
x-direction. Figure 2 shows the graph of the solution u7 for m = 0.9, μ = 1 and ν = −2. Note
that u7 becomes infinity when cn(μ(x − νt),m) = 0, that is, μ(x − νt) = (2n + 1)K , where
K = ∫ π/2

0

(
1 − m2 sin2(s)

)−1/2
ds and n = 0,±1, . . . For instance, in figure 2, u7 becomes

negative infinity when the point (x, t) is close to the lines x+2t = 2.280 549 138(2n+1), where
n = 0,±1, . . . It is also noted from the expression of the solutions u3 with ε2 = 1, u5, . . . , u9

that these solutions are unbounded, since the denominator in the expression can be zero at
certain points.
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Figure 1. The plot of the solution u4 to the Boussinesq equation (4.1) with m = 0.99, μ = 1 and
ν = −1 and the initial status of u4.

Figure 2. The plot of the solution u7 to the Boussinesq equation (4.1) with m = 0.9, μ = 1 and
ν = −2 and the initial status of u7.

5. Traveling wave solutions for the modified KdV equation

We consider the following modified KdV equation:

ut + u2ux + uxxx = 0, (5.1)

where u := u(x, t) is a complex-valued function. Letting u(x, t) = ũ(ξ), where ξ is as
defined in section 3, (5.1) is reduced to the ODE

−νũ′ + ũ2ũ′ + μ2ũ′′′ = 0. (5.2)

Balancing ũ2ũ′ and ũ′′′ yields N = 1. Thus, we now consider candidate traveling wave
solutions of the form

ũ(ξ) = c0 + c1F(ξ),

13
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where c1 �= 0, and F satisfies ODE (2.1) with coefficients qk, k = 0, . . . , 4. Substituting ũ

into (5.2), we obtain the following sufficient conditions for ũ to satisfy (5.2):⎧⎪⎨
⎪⎩

c2
1 + 6μ2q4 = 0,

2c0c1 + 3μ2q3 = 0,

−ν + c2
0 + μ2q2 = 0.

(5.3)

According to (5.3),

u(x, t) = ±μ

(
3q3

2
√−6q4

−
√

−6q4F (μ (x − ν1t))

)
, (5.4)

where ν1 = μ2
(
q2 − 3q2

3
8q4

)
and μ is an arbitrary constant, is a solution of (5.1). Now, if

q1 = q3 = 0 and q0 �= 0, then theorem 2 can be applied with (5.4) to give the following
solution form of (5.1):

u(x, t) = ε1μ
√

−6q0

(
ε2

√
q4

q0
F (μ (x − ν2t)) +

1

F (μ (x − ν2t))

)
, (5.5)

where εj = ±1, j = 1, 2, ν2 = μ2
(
q2 −ε26q0

√
q4

q0

)
and μ is an arbitrary constant. In addition,

if q4 = q0q
2
3

q2
1

and q0q1 �= 0, then theorem 3 can be applied with (5.4) to yield another solution

form of (5.1):

u(x, t) = ±μ

[
3q1

2
√−6q0

−
√

−6q0

(
q3

q1
F (μ (x − ν3t)) +

1

F (μ (x − ν3t))

)]
, (5.6)

where ν3 = μ2
(
q2 − 6q0q3

q1
− 3q2

1
8q0

)
and μ is an arbitrary constant.

We can apply theorem 4 with (5.4) to obtain the following class of traveling wave solutions
of (5.1):

u1(x, t) = λ +
3ϑμ2

λ

e−μ(x−(μ2+λ2)t) + ϑ +
ϑ2(2λ2+3μ2)

8λ2 eμ(x−(μ2+λ2)t)
,

where λ, ϑ and μ are arbitrary parameters such that λ �= 0. It is noted that if λ, ϑ and μ are all
real constants satisfying λϑμ �= 0, then u1 describes a single wave traveling in the x-direction
and u1(x, t) → λ, as μ(x − (μ2 + λ2)t) → ±∞.

We can also apply theorem 5 with (5.6) to obtain another class of solutions of (5.1):

u2(x, t)= ε1

√−6μ

σ −1

(
σ +1

2
− σ e−μ(x−ν4t)+ 1

2λ(σ +1) + 1
2ε2

√
λ2 − 4ϑ(σ −1) + ϑ eμ(x−ν4t)

e−μ(x−ν4t) + λ + ϑ eμ(x−ν4t)

)

− ε1

√−6μσ

σ − 1

(
e−μ(x−ν4t) + λ + ϑ eμ(x−ν4t)

σ e−μ(x−ν4t) + 1
2λ(σ + 1) + 1

2ε2

√
λ2 − 4ϑ(σ − 1) + ϑ eμ(x−ν4t)

)
,

where εj = ±1, j = 1, 2, ν4 = μ2(σ 2+10σ+1)

2(σ−1)2 , and λ, ϑ and σ are arbitrary constants such
that σ �= 1. Note that u1 is the same as solution (18) in [6], obtained using the exp-function
method. However, u2 is a new solution.

We can also obtain Jacobian elliptic solutions to the modified KdV equation (5.1) by
combining theorem 1 with (5.4)–(5.6).

(1) For k ∈ {1, . . . , 4}, j ∈ {1, . . . , 12} and γ arbitrary, (5.4) with F = ϕj,k(·, γ ) and
ql = pj,l(γ ), l = 0, . . . , 4, is a solution of (5.1).

(2) For k ∈ {1, . . . , 4} and j ∈ {1, 2, 3, 4, 5, 6, 9, 11}, (5.5) with F = ϕj,k(·, 0) and
ql = pj,l(0), l = 0, . . . , 4, is a solution of (5.1).
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(3) For k ∈ {1, . . . , 4} and j ∈ {10, 12}, (5.6) with F = ϕj,k(·, 0) and ql = pj,l(0), l =
0, . . . , 4, is a solution of (5.1).

Thus, we can obtain many Jacobian elliptic solutions of (5.1). To keep the details to minimum,
we will not list them all here. Instead, we just select some of them to compare our results
with those reported in [18, 22]. Note that our method can also be applied to the modified KdV
equation considered in [18, 22].

Let γ be such that γ �= ±1 and γ �= ±m. Choosing qk = p2,k(γ ), k = 0, . . . , 4, from
(5.4), it follows that

u3(x, t) = μ

{
3γ (1 + m2 − 2γ 2)√

−6(m2 − γ 2)(1 − γ 2)
−

√
−6(m2 − γ 2)(1 − γ 2)sn[μ(x − ν5t)]

γ sn[μ(x − ν5t)] + 1

}
,

u4(x, t) = μ

{
3γ (1 + m2 − 2γ 2)√

−6(m2 − γ 2)(1 − γ 2)
−

√
−6(m2 − γ 2)(1 − γ 2)

γ + m sn[μ(x − ν5t)]

}
,

u5(x, t) = μ

{
3γ (1 + m2 − 2γ 2)√

−6(m2 − γ 2)(1 − γ 2)
−

√
−6(m2 − γ 2)(1 − γ 2) dn[μ(x − ν5t)]

γ dn[μ(x − ν5t)] + m cn[μ(x − ν5t)]

}
,

u6(x, t) = μ

{
3γ (1 + m2 − 2γ 2)√

−6(m2 − γ 2)(1 − γ 2)
−

√
−6(m2 − γ 2)(1 − γ 2) cn[μ(x − ν5t)]

γ cn[μ(x − ν5t)] + dn[μ(x − ν5t)]

}
,

where ν5 = μ2
[
6γ 2 − 1 − m2 − 3γ 2(1+m2−2γ 2)2

2(m2−γ 2)(1−γ 2)

]
and μ is an arbitrary constant, are solutions

of (5.1). If γ is any real number such that m < |γ | < 1, then uk, k = 3, . . . , 6 are real
and bounded. Moreover, if γ = 0, then according to (5.5) we can obtain the following two
unbounded solutions:

u7(x, t) = √−6μ

{
±m sn[μ(x − ν6t)] +

1

sn[μ(x − ν6t)]

}
,

u8(x, t) = √−6μ

{
±dn[μ(x − ν6t)]

cn[μ(x − ν6t)]
+

m cn[μ(x − ν6t)]

dn[μ(x − ν6t)]

}
,

where ν6 = −μ2(1 ± 6m + m2) and μ is an arbitrary constant.
Similarly, if qk = p3,k(γ ), k = 0, . . . , 4, where γ is an arbitrary constant such that

γ �= ±1 and γ �= ±i m√
1−m2 , then we get solutions of (5.1) as follows:

u9(x, t) = μ

{
3γ (1 − 2m2 − 2γ 2 + 2γ 2m2)√
−6(γ 2m2 − m2 − γ 2)(1 − γ 2)

−
√

−6(γ 2m2 − m2 − γ 2)(1 − γ 2) cn[μ(x − ν7t)]

γ cn[μ(x − ν7t)] + 1

}
,

u10(x, t) = μ

{
3γ (1 − 2m2 − 2γ 2 + 2γ 2m2)√
−6(γ 2m2 − m2 − γ 2)(1 − γ 2)

−
√

6(γ 2m2 − m2 − γ 2)(1 − γ 2)(1 − m2)

γ
√

m2 − 1 + m cn[μ(x − ν7t)]

}
,

u11(x, t) = μ

{
3γ (1 − 2m2 − 2γ 2 + 2γ 2m2)√
−6(γ 2m2 − m2 − γ 2)(1 − γ 2)

−
√

−6(γ 2m2 − m2 − γ 2)(1 − γ 2) dn[μ(x − ν7t)]

γ dn[μ(x − ν7t)] + im sn[μ(x − ν7t)]

}
,
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u12(x, t) = μ

{
3γ (1 − 2m2 − 2γ 2 + 2γ 2m2)√
−6(γ 2m2 − m2 − γ 2)(1 − γ 2)

−
√

−6(γ 2m2 − m2 − γ 2)(1 − γ 2)(1 − m2)sn[μ(x − ν7t)]

γ
√

1 − m2sn[μ(x − ν7t)] + dn[μ(x − ν7t)]

}
,

where ν7 = μ2
[
2m2 −6γ 2m2 +6γ 2 −1− 3γ 2(1−2m2−2γ 2+2γ 2m2)2

2(m2γ 2−m2−γ 2)(1−γ 2)

]
and μ is an arbitrary constant.

Moreover, if γ = 0, then we have the unbounded solutions

u13(x, t) = μ
√

6(m2 − 1)

{
± m√

m2 − 1
cn[μ(x − ν8t)] +

1

cn[μ(x − ν8t)]

}
,

u14(x, t) = μ
√

6(1 − m2)

{
∓ 1√

m2 − 1

dn[μ(x − ν8t)]

sn[μ(x − ν8t)]
+ m

sn[μ(x − ν8t)]

dn[μ(x − ν8t)]

}
,

where ν8 = μ2(2m2 − 1 ± 6m
√

m2 − 1) and μ is an arbitrary constant.
If qk = p6,k(γ ), k = 0, . . . , 4, where γ is an arbitrary constant such that m2γ 4 + m2 +

4γ 2 − 2m2γ 2 �= 0, then we can obtain other four solutions of (5.1)

u15(x, t) = μ

{
3γ (γ 2m2 − m2 + 2)√

6(γ 4m2 + m2 + 4γ 2 − 2γ 2m2)

−
√

6(γ 4m2 + m2 + 4γ 2 − 2γ 2m2)

2γ + i2sn[μ(x − ν9t)] + 2 cn[μ(x − ν9t)]

}
,

u16(x, t) = μ

{
3γ (γ 2m2 − m2 + 2)√

6(γ 4m2 + m2 + 4γ 2 − 2γ 2m2)

−
√

6(γ 4m2 + m2 + 4γ 2 − 2γ 2m2) dn[μ(x − ν9t)]

2γ dn[μ(x − ν9t)] + i2 cn[μ(x − ν9t)] + 2
√

1 − m2sn[μ(x − ν9t)]

}
,

u17(x, t) = μ

{
3γ (γ 2m2 − m2 + 2)√

6(γ 4m2 + m2 + 4γ 2 − 2γ 2m2)

−
√

6(γ 4m2 + m2 + 4γ 2 − 2γ 2m2)m sn[μ(x − ν9t)]

2γm sn[μ(x − ν9t)] + i2 + i2 dn[μ(x − ν9t)]

}
,

u18(x, t) = μ

{
3γ (γ 2m2 − m2 + 2)√

6(γ 4m2 + m2 + 4γ 2 − 2γ 2m2)

−
√

6(γ 4m2 + m2 + 4γ 2 − 2γ 2m2)im cn[μ(x − ν9t)]

i2γm cn[μ(x − ν9t)] + 2 dn[μ(x − ν9t)] + 2
√

1 − m2

}
,

where ν9 = μ2
[

m2−3γ 2m2−2
2 + 3γ 2(γ 2m2−m2+2)2

2(m2γ 4+m2+4γ 2−2m2γ 2)

]
and μ is an arbitrary constant. Furthermore,

choosing γ = 0 yields that, for any μ,

u19(x, t) = √−6μm sn[μx + μ3(m2 + 1)t],

u20(x, t) = √−6μ
1

sn[μx + μ3(m2 + 1)t]
,

u21(x, t) = √−6μm
cn[μx + μ3(m2 + 1)t]

dn[μx + μ3(m2 + 1)t]
,
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Figure 3. The plot of the solution u6 to the modified KdV equation (5.1) with m = 0.95, μ = 1
and γ = 0.96 and the initial status of u6.

u22(x, t) = √−6μ
dn[μx + μ3(m2 + 1)t]

cn[μx + μ3(m2 + 1)t]
,

u23(x, t) =
√

6μm cn[μx − μ3(2m2 − 1)t],

u24(x, t) = μ
√

6(m2 − 1)
1

cn[μx − μ3(2m2 − 1)t]
,

u25(x, t) = μ
√−6

dn[μx − μ3(2m2 − 1)t]

sn[μx − μ3(2m2 − 1)t]
,

u26(x, t) = μm
√

6(1 − m2)
sn[μx − μ3(2m2 − 1)t]

dn[μx − μ3(2m2 − 1)t]
,

are solutions of (5.1).

Remark 8. It follows from remark 1 that uj , j = 3, . . . , 26, still satisfy (5.1) even if
cn(·), sn(·) and dn(·) are replaced, respectively, by ±cn(·),±sn(·) and ±dn(·).
Remark 9. If γ = 0, then u3, u9 and u15 are the same as the solutions reported in [18] (with
a = 1 and b = 1), and u3, u4 and u7 are the same as those reported in [22] (for α = 1 and
β = 1). However, all of the other Jacobian elliptic solutions are new. More new solutions can
be obtained if the solution form (3.9) is used.

To demonstrate the physical insight of the new solutions, we take u6 as an example. By
choosing m = 0.95 and μ = 1, the wave profiles of the solution u6 for two different values
of γ, γ = 0.96 and γ = −0.96 are displayed in figures 3 and 4, respectively. Clearly, in both
cases, the solutions describe the traveling of waves in the x-direction. Different values of γ

yield different wave shapes.

6. Traveling wave solutions for the shallow long wave approximate equations

In this section, we will apply the method discussed in section 3 to a system of partial differential
equations. Consider the shallow long wave approximate equations
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Figure 4. The plot of the solution u6 to the modified KdV equation (5.1) with m = 0.95, μ = 1
and γ = −0.96 and the initial status of u6.

{
ut − uux − vx + 1

2uxx = 0,

vt − vux − uvx − 1
2vxx = 0,

(6.1)

where u := u(x, t) is the horizontal velocity of the water and v := v(x, t) is the height
that deviates from the equilibrium position of the water. Substituting u(x, t) = ũ(ξ) and
v(x, t) = ṽ(ξ), where ξ is as defined previously, into (6.1) and balancing the highest-order
derivative and nonlinear terms, we obtain Nu = 1 and Nv = 2. If candidate traveling wave
solutions are chosen according to (3.2), then all of the coefficients are required to be zero.
Accordingly, we will use the more general form (3.9) and consider candidate solutions⎧⎪⎪⎨

⎪⎪⎩
ũ(ξ) = ĉ0,0 +

ĉ1,1F(ξ) + ĉ2,1F
′(ξ)

θF (ξ) + 1
,

ṽ(ξ) = c̃0,0 +
c̃1,1F(ξ) + c̃2,1F

′(ξ)

θF (ξ) + 1
+

c̃1,2F
2(ξ) + c̃2,2F(ξ)F ′(ξ)

(θF (ξ) + 1)2
,

(6.2)

where F satisfies ODE (2.1) with coefficients qk, k = 0, . . . , 4. By substituting (6.2) into
(6.1), we can ascertain the following sufficient conditions for ũ and ṽ to satisfy the shallow
long wave approximate equations (6.1):

μ = ± ĉ1,1

α
ĉ0,0 = −ν +

−4q0ĉ1,1θ
3 + 3q1ĉ1,1θ

2 − 2q2ĉ1,1θ + q3ĉ1,1

4α2
,

ĉ2,1 = 0, c̃0,0 = ĉ2
1,1

16α4

[
12q0q1θ

5 − 8q2
0θ6 − (

12q0q2 + 3q2
1

)
θ4 + (16q0q3 + 4q1q2)θ

3

− (24q0q4 + 6q1q3)θ
2 + 12q1q4θ + q2

3 − 4q2q4
]
,

c̃1,1 = ĉ2
1,1(4θ3q0 − 3θ2q1 + 2θq2 − q3)

4α2
, c̃1,2 = − ĉ2

1,1

2
,

c̃2,1 = ± ĉ2
1,1

2α
, c̃2,2 = ∓ ĉ2

1,1θ

2α
,

where α =
√

q0θ4 − q1θ3 + q2θ2 − q3θ + q4 and θ, ν, ĉ1,1 are arbitrary constants. Note
that these requirements are the same as those reported in [2]. Note also that there are no
conditions restricting the choice of coefficients qk, k = 0, . . . , 4, of ODE (2.1). Using
ϕj,k(·, 0), j = 1, . . . , 6, k = 1, . . . , 4, from theorem 1, we can reproduce the same Jacobian
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Figure 5. The plot of the solution u1 of the shallow long wave approximate equations (6.1) with
m = 0.99, ν = −2 and ϑ = γ = 1 and the initial status of u1.

Figure 6. The plot of the solution v1 to the shallow long wave approximate equations (6.1) with
m = 0.99, ν = −2 and ϑ = γ = 1 and the initial status of v1.

elliptic solutions of (6.1) reported in [2]. We also can deduce many new solutions by applying
theorems 1–3. These solutions cannot be obtained using the results in [2]. For example,
choosing θ = 0 and qj = p7,j (γ ), j = 0, . . . , 4, we can obtain the following solutions for
the shallow long wave approximate equations (6.1):

uj (x, t) = −ν +
ϑβ

4α2
+ ϑϕ7,j

(
μ(x − νt)

)
, j = 1 . . . , 4,

vj (x, t) = −ϑ2

{
η

16α4
+

β

4α2
ϕ7,j (μ(x − νt)) − 1

2α
ϕ′

7,j (μ(x − νt)) +
1

2
ϕ2

7,j (μ(x − νt))

}
,

j = 1 . . . , 4,

where ϕ7,j , j = 1, . . . , 4, are as defined in section 2, α =
√

γ 3(1 − m2) + γ 2(2 − m2) + γ ,

β = γ 2(3m2 − 3) + γ (2m2 − 4) − 1, η = γ 4(3m4 − 6m2 + 3) + γ 3(4m4 − 12m2 + 8) + γ 2(6 −
6m2) − 1, μ = ϑ/α, and ν, γ, ϑ and m (m ∈ (0, 1)) are arbitrary. For the other solutions, we
leave it to the reader.
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To show the physical insight of these solutions, we take the solution (u1, v1) as an example.
Figures 5 and 6 display the graphs of u1 and v1 with m = 0.99, ν = −2 and ϑ = γ = 1.
Clearly, the solution describes the propagation of waves with horizontal velocity u1 along the
negative x-direction.

7. Conclusion

In this paper, we have presented a generalized expansion method for generating traveling wave
solutions of nonlinear partial differential equations. This method has been successfully applied
to the Boussinesq equation, the modified KdV equation and the shallow long wave approximate
equations, and many new results have been obtained. For each equation investigated, we are
able to replicate solutions previously derived in the literature, and discover many new ones.
Extensions to two- and three-dimensional partial differential equations are possible. Other
nonlinear partial differential equations can be tackled if an appropriate transformation can be
found. For example, in [6], the transformation u = ln v was applied to the Dodd–Bullough–
Mikhailov equation to yield a nonlinear partial differential equation involving powers of v and
its derivatives.
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Appendix

Some solutions of the Boussinesq equation (4.1), derived from this work, have been given in
section 4, and the rest are listed below.

u10(x, t) = ν2 − 1 + 2μ2(2m2 − 1)

6
− μ2[dn(ξ) − √

1 − m2 sn(ξ)]

2[dn(ξ) +
√

1 − m2 sn(ξ)]
,

u11(x, t) = ν2 − 1 − 2μ2(m2 + 1)

6
+

μ2(1 − m2)[1 − m sn(ξ)]

2[1 + m sn(ξ)]
,

u12(x, t) = ν2 − 1 − 2μ2(m2 + 1)

6
− μ2(1 − m2)[1 − sn(ξ)]

2[1 + sn(ξ)]
,

u13(x, t) = ν2 − 1 − 2μ2(m2 + 1)

6
− μ2(1 − m2)[dn(ξ) − cn(ξ)]

2[dn(ξ) + cn(ξ)]
,

u14(x, t) = ν2 − 1 − 2μ2(m2 + 1)

6
+

μ2(m2 − 1)[m cn(ξ) − dn(ξ)]

2[m cn(ξ) + dn(ξ)]
,

u15(x, t) = ν2 − 1 − 2μ2(m2 − 2)

6
− μ2m2[dn(ξ) − √

1 − m2]

2[dn(ξ) +
√

1 − m2]
,

u16(x, t) = ν2 − 1 − 2μ2(m2 − 2)

6
− μ2m2[1 − dn(ξ)]

2[1 + dn(ξ)]
,
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u17(x, t) = ν2 − 1 − μ2(2m2 + 12m + 2)

6

+
μ2(m − 1)2

2

{[
1 − √

m sn(ξ)

1 +
√

m sn(ξ)

]2

+ ε1

[
1 +

√
m sn(ξ)

1 − √
m sn(ξ)

]2
}

,

u18(x, t) = ν2 − 1 − μ2(2m2 + 12m + 2)

6

+
μ2(m − 1)2

2

{[
dn(ξ) − √

m cn(ξ)

dn(ξ) +
√

m cn(ξ)

]2

+ ε1

[
dn(ξ) +

√
m cn(ξ)

dn(ξ) − √
m cn(ξ)

]2
}

,

u19(x, t) = ν2 − 1 − μ2(2m2 − 4 + 12
√

1 − m2)

6
− μ2(1 +

√
1 − m2)2

2

×
⎧⎨
⎩

[
cn(ξ) − 4

√
1 − m2 sn(ξ)

cn(ξ) + 4
√

1 − m2 sn(ξ)

]2

+ ε1

[
cn(ξ) + 4

√
1 − m2 sn(ξ)

cn(ξ) − 4
√

1 − m2 sn(ξ)

]2
⎫⎬
⎭ ,

u20(x, t) = ν2 − 1 − μ2(2m2 − 4 − 12
√

1 − m2)

6

− μ2(1 − √
1 − m2)2

2

⎧⎨
⎩

[
dn(ξ) − 4

√
1 − m2

dn(ξ) + 4
√

1 − m2

]2

+ ε1

[
dn(ξ) + 4

√
1 − m2

dn(ξ) − 4
√

1 − m2

]2
⎫⎬
⎭ ,

u21(x, t) = ν2 − 1 + 2μ2(2m2 − 1)

6
− μ2

2

[
sn(ξ) +

√
1 − m2 dn(ξ)

m
√

2 − m2 +
√−m4 + m2 + 1 cn(ξ)

]2

− μ2

2
ε1

[
m

√
2 − m2 +

√−m4 + m2 + 1 cn(ξ)

sn(ξ) +
√

1 − m2 dn(ξ)

]2

,

u22(x, t) = ν2 − 1 + 2μ2(2m2 − 1)

6

− μ2

2

[
cn(ξ) + (m2 − 1)

m
√

2 − m2 dn(ξ) +
√

(−m4 + m2 + 1)(1 − m2) sn(ξ)

]2

− ε1
μ2

2

[
m

√
2 − m2 dn(ξ) +

√
(−m4 + m2 + 1)(1 − m2) sn(ξ)

cn(ξ) + (m2 − 1)

]2

,

u23(x, t) = ν2 − 1 − μ2(m2 + 1)

6
+

μ2(m2 − 1)

2

[
cn(ξ) +

√
1 − m2 dn(ξ)

m +
√

m4 − m2 + 1 sn(ξ)

]2

+ ε1
μ2(m2 − 1)

2

[
m +

√
m4 − m2 + 1 sn(ξ)

cn(ξ) +
√

1 − m2 dn(ξ)

]2

,

u24(x, t) = ν2 − 1 − μ2(m2 + 1)

6
− μ2(1 − m2)2

2

[
sn(ξ) +

√
1 − m2

m dn(ξ) +
√

m4 − m2 + 1 cn(ξ)

]2

− ε1
μ2

2

[
m dn(ξ) +

√
m4 − m2 + 1 cn(ξ)

sn(ξ) +
√

1 − m2

]2

,
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u25(x, t) = ν2 − 1 − μ2(m2 + 1)

6
− μ2(m2 − 1)

2

[
dn(ξ) +

√
1 − m2 cn(ξ)

m2 sn(ξ) +
√

m4 − m2 + 1

]2

− ε1
μ2(m2 − 1)

2

[
m2 sn(ξ) +

√
m4 − m2 + 1

dn(ξ) +
√

1 − m2 cn(ξ)

]2

,

u26(x, t) = ν2 − 1 − μ2(m2 + 1)

6
+

μ2(1 − m2)2

2

[
1 + m

√
1 − m2 sn(ξ)

m2 cn(ξ) +
√

m4 − m2 + 1 dn(ξ)

]2

+ ε1
μ2

2

[
m2 cn(ξ) +

√
m4 − m2 + 1 dn(ξ)

1 + m
√

1 − m2 sn(ξ)

]2

,

where for each j = 1, 2, εj ∈ {0, 1}, and μ and ν are arbitrary real constants. Note
that the solutions uj , j ∈ {11, 14, 15, 16, 17, 18, 25, 26}, are bounded, while the solutions
uj , j ∈ {12, 13, 19, 20, 21, 22, 23, 24}, are unbounded.
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